Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
P
prenet
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lishen
prenet
Commits
6496262f
Commit
6496262f
authored
May 18, 2023
by
lishen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[fix]
parent
0b240082
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
14 additions
and
5 deletions
+14
-5
data_loader.py
data_loader.py
+14
-5
No files found.
data_loader.py
View file @
6496262f
...
@@ -4,9 +4,11 @@ from PIL import Image
...
@@ -4,9 +4,11 @@ from PIL import Image
import
torch.utils.data
as
data
import
torch.utils.data
as
data
from
torchvision
import
datasets
,
transforms
from
torchvision
import
datasets
,
transforms
def
My_loader
(
path
):
def
My_loader
(
path
):
return
PIL
.
Image
.
open
(
path
)
.
convert
(
'RGB'
)
return
PIL
.
Image
.
open
(
path
)
.
convert
(
'RGB'
)
class
MyDataset
(
torch
.
utils
.
data
.
Dataset
):
class
MyDataset
(
torch
.
utils
.
data
.
Dataset
):
def
__init__
(
self
,
txt_dir
,
image_path
,
transform
=
None
,
target_transform
=
None
,
loader
=
My_loader
):
def
__init__
(
self
,
txt_dir
,
image_path
,
transform
=
None
,
target_transform
=
None
,
loader
=
My_loader
):
...
@@ -15,8 +17,14 @@ class MyDataset(torch.utils.data.Dataset):
...
@@ -15,8 +17,14 @@ class MyDataset(torch.utils.data.Dataset):
for
line
in
data_txt
:
for
line
in
data_txt
:
line
=
line
.
strip
()
line
=
line
.
strip
()
words
=
line
.
split
(
' '
)
words
=
line
.
split
(
' '
)
print
(
words
)
p
=
''
imgs
.
append
((
words
[
0
],
int
(
words
[
1
]
.
strip
())))
for
i
,
word
in
enumerate
(
words
):
if
i
<
len
(
words
)
-
1
:
if
i
>
0
:
p
+=
' '
p
+=
word
imgs
.
append
((
p
,
int
(
words
[
-
1
]
.
strip
())))
self
.
imgs
=
imgs
self
.
imgs
=
imgs
self
.
transform
=
transform
self
.
transform
=
transform
self
.
target_transform
=
target_transform
self
.
target_transform
=
target_transform
...
@@ -32,7 +40,7 @@ class MyDataset(torch.utils.data.Dataset):
...
@@ -32,7 +40,7 @@ class MyDataset(torch.utils.data.Dataset):
# label = list(map(int, label))
# label = list(map(int, label))
# print label
# print label
# print type(label)
# print type(label)
#img = self.loader('/home/vipl/llh/food101_finetuning/food101_vgg/origal_data/images/'+img_name.replace("\\","/"))
#
img = self.loader('/home/vipl/llh/food101_finetuning/food101_vgg/origal_data/images/'+img_name.replace("\\","/"))
img
=
self
.
loader
(
self
.
image_path
+
img_name
)
img
=
self
.
loader
(
self
.
image_path
+
img_name
)
# print img
# print img
...
@@ -46,6 +54,7 @@ class MyDataset(torch.utils.data.Dataset):
...
@@ -46,6 +54,7 @@ class MyDataset(torch.utils.data.Dataset):
# if the label is the single-label it can be the int
# if the label is the single-label it can be the int
# if the multilabel can be the list to torch.tensor
# if the multilabel can be the list to torch.tensor
def
load_data
(
image_path
,
train_dir
,
test_dir
,
batch_size
):
def
load_data
(
image_path
,
train_dir
,
test_dir
,
batch_size
):
normalize
=
transforms
.
Normalize
(
mean
=
[
0.5457954
,
0.44430383
,
0.34424934
],
normalize
=
transforms
.
Normalize
(
mean
=
[
0.5457954
,
0.44430383
,
0.34424934
],
std
=
[
0.23273608
,
0.24383051
,
0.24237761
])
std
=
[
0.23273608
,
0.24383051
,
0.24237761
])
...
@@ -68,6 +77,6 @@ def load_data(image_path, train_dir, test_dir, batch_size):
...
@@ -68,6 +77,6 @@ def load_data(image_path, train_dir, test_dir, batch_size):
])
])
train_dataset
=
MyDataset
(
txt_dir
=
train_dir
,
image_path
=
image_path
,
transform
=
train_transforms
)
train_dataset
=
MyDataset
(
txt_dir
=
train_dir
,
image_path
=
image_path
,
transform
=
train_transforms
)
test_dataset
=
MyDataset
(
txt_dir
=
test_dir
,
image_path
=
image_path
,
transform
=
test_transforms
)
test_dataset
=
MyDataset
(
txt_dir
=
test_dir
,
image_path
=
image_path
,
transform
=
test_transforms
)
train_loader
=
torch
.
utils
.
data
.
DataLoader
(
dataset
=
train_dataset
,
batch_size
=
batch_size
,
shuffle
=
True
,
num_workers
=
0
)
train_loader
=
torch
.
utils
.
data
.
DataLoader
(
dataset
=
train_dataset
,
batch_size
=
batch_size
,
shuffle
=
True
,
num_workers
=
0
)
test_loader
=
torch
.
utils
.
data
.
DataLoader
(
dataset
=
test_dataset
,
batch_size
=
batch_size
//
2
,
shuffle
=
False
,
num_workers
=
0
)
test_loader
=
torch
.
utils
.
data
.
DataLoader
(
dataset
=
test_dataset
,
batch_size
=
batch_size
//
2
,
shuffle
=
False
,
num_workers
=
0
)
return
train_dataset
,
train_loader
,
test_dataset
,
test_loader
return
train_dataset
,
train_loader
,
test_dataset
,
test_loader
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment